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Abstract

Some examples of locally unbounded topologizations of the field of rational numbers are
given. Their completions are fields in which the rational number field is algebraically closed.
A similar development is given for the ring of rational integers and other domains. © 1998
Elsevier Science B.V. All rights reserved.
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1. Introduction

All fields and rings considered in this paper are assumed to be commutative. We
recall that a subset S of a commutative topological ring R is bounded if given any
neighborhood ¥V of zero, there exists a neighborhood U of zero such that SU C V. If
R is a field, this is equivalent to saying that given any neighborhood ¥ of zero, there
exists a nonzero element x € R such that Sx CV (see [7, 10, Theorem 3, p. 42 or 14,
Lemma 12, p. 26]). A ring topology on R is locally bounded if there is a bounded
neighborhood of zero. A nonzero element @ of a topological ring is called topologically
nilpotent if lim,_,,, a”"=0. A field with a ring topology is called completable or full
if its completion is a field.

In 1964 Hinrichs [2] constructed, using an inductive procedure, ring topologies on
the ring of integers Z which do not have any basis of zero neighborhoods consisting
of ideals. In 1968, with a similar method, Mutylin [6] constructed completable locally

1 Some results in this paper were presented at the “Seminar on General Topology and Topological Algebra”,
CUNY, New York.
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unbounded topologizations of the rational number field Q. In this article we construct,
in an explicit way, some locally unbounded field topologies on the rational field. Its
completions are fields in which Q is algebraically closed. We also show ring topologies
on the ring of integers with similar features. An analogous development can be given
for ring and field topologies in other domains and fields, as we suggest in Section 5,
with the ring of polynomials £[X] and its quotient field k(X).

We obtained first the topologies and the completion fields introduced here by means
of nonstandard analysis. For an introduction to this subject see [3,11]. We follow a
standard treatment in order to get a more accessible exposition and a broader audience;
but doing that, we have to add some technical lemmas and the proofs become more
cumbersome.

Throughout this article parameters a, b, ¢, d with subscripts will denote rational
integers and (p,)nen Will denote a sequence of natural numbers which satisfies the
following properties:

pi=1, pp>2 and foral neN, p.>(pa)" (1

By induction, p,., >2" for n€ N. Moreover, p,,, >n" for n>3.

2. Some ring topologies on Z

We are going to define some ring topologies on the rational integers Z. We show
some algebraic properties of the corresponding completions in Theorems 3 and 4. For
this purpose we take a sequence of natural numbers (p,).cn Which satisfies (1). For
each m e N, we define the following subset of Z:

!
V=4 > npn:an €Z and |a,|" < ppi1 ¢ - (2)

n>m

For m > 3, the given representation of the elements of ¥, is unique. The following result
provides us a unique representation of rational integers according to this representation
of the elements of V;,.

Lemma 1. Each element a€Z can be expressed uniquely as a=Y.,_, anp, with
an € Z satisfying for all k € N the condition

k
E Qn Pn
n=1

k
< %Jr—l and, if equality holds, then Za,, pn>0. 3)

n=1

Proof. Let p; be the smallest element of the sequence (p,)sen Which satisfies |a| < p;.
There are integers ay, 7, such that @ =a, p; + r, with |r;| < ps/2 and, if equality holds,
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then », = p;/2 according to the following cases:

o if p/2<a< ps, then a;=1 and ry=a — p;,

o if —p,/2<a< ps/2, then a;,=0 and r,=a,

o if —p;<a< — pg/2, then ag=—1 and r,=a + ps.

Now, we proceed with r;; we can express r; =a,—| ps—1 + ¥s—1, Where |Fe—1] < ps—1/2
and, if equality holds, then r,_; = p,_1/2. We continue till we get the expression
a=3""_, aypy. Let us show the uniqueness by contradiction. Suppose that an integer
is represented by two different sums satisfiying condition (3):

s m
Z an Pn = Z by pi.
n=1 n=1

If s<m and b, #0, we can rearrange the above identity,

s K m
D anpn =3 bupa| =D bus
n=1 n=1

s+l
Taking into account the bound in (3), we deduce that

s s
Zanpn - anpn < Ps+1
n=1 n=1

and

anpn

s+1

Z Ps+1s

yielding a contradiction. If s=m, let j be the largest index at which a, #b,; we get
the identity

j—1 Jj=1
Z anPn - Z ann
n=1 n=1

and again, a contradiction. [

=la; — bj| pjs

It is easy to check that, for m > 3, the representation of the elements of ¥, given in
(2) coincides with that of Lemma 1.

We recall that for a sequence {U, }nen of subsets of a commutative ring R to be a
fundamental system of neighborhoods at zero for a Hausdorff ring topology 7 on R,
it suffices that the following properties hold:

Foralln 0e€eU, U,=-U,, Un1CQU,. (4)
For all n there exists k such that Uy + U, C U,,. (5)

For all n there exists k£ such that U, U, C U,. (6)
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For all n and x € R there exists k£ such that xU, C U,. @)
M Un={0}. ®)
nelN

If, in addition, R is a field, then J is a field topology if {U,}.en also satisfies the
following condition:

For all # there exists & such that (1 + Uy)"1 C 1+ U,. 9

See [4, 5,10, 14] for instance. It is left to the reader to check that the subsets ¥, defined
in (2) satisfy properties (4)—(8) (cf. [5, Paragraph 1]). In order to prove property (6),
the product of two elements in the neighborhood V;,

! !
@=> anpn, B=_ baPn
n=k n=k

must be written grouping the coefficients in the following way

1 m m—1
af=(arbipe)pr + ) (( anpn> by + am (Z bnpn>> j (10)
n=k n=*k

m=k+1

Thus, we deduce the following result.

Theorem 1. The family B ={Vy,}men is a fundamental system of neighborhoods of
zero for a Hausdorff ring topology on Z.

We shall denote this ring topology by 7. This topology does not have an ideal base
of zero neighborhoods and, therefore, it is locally unbounded (see [5, 13]).

The topological ring (Z,7 ) is not complete. We shall construct its completion Z,
which is, as usual, the quotient ring of the ring of Cauchy sequences by the ideal of
all sequences converging to zero. We say that two Cauchy sequences are equivalent if
they represent the same element in this quotient ring. In the sequel, > 0 a,p, will
mean the element in Z which is the limit of the Cauchy sequence (3. @n Pn)men,
in case it exists. In order to describe this completion in an easier way, we need the
next lemma.

Lemma 2. Let (dp)men be a Cauchy sequence in (Z,7 ). There exists a sequence
(to)nen and a Cauchy sequence (Wp)men Which is equivalent to (U, )men and satisfies
Om =" tapn, for all m. In addition, |t,|" < pp41, for all n>1.

Proof. There exists a subsequence (ym)men Of the sequence (o, )men Which satisfies
Ym, — Vmy € Vms1, for all my,my > m. The representation of the elements in ¥}, in (2) is
unique for all m > 3. Besides, for all m > 6, the difference y, — ys belongs to V5. Thus
we can write

Hm
Ym =76+ Y tun Pr> (11)
—7
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with |ty,|” < puy1 and the index u, >m. We set t; =y and we define

won =4 V6 if m<e,
"\ ve+ S stmnPm, Otherwise.

Let us show that (wn)men is a Cauchy sequence equivalent to (y)men. Given a neigh-
borhood of zero ¥, in the basis # with m > 6, let us show that y; — w; € ¥y, for
all k> p,,. Since pp — yYm € Vis1, We can write
K
Ve —Im= Y tinDn
n=m+1

with |u,|"*! < pnyi, for all n>m+ 1. Then

=76 t+ Ztmnpn + Z Up Pn

n=m+1
—V6+Ztmnpn+ Z (tmn +un)pa + Z UnDn-
n=m+1 n=pm+1

(We do the case p,>m; if p,, =m, the proof follows similarly.) Since

y tmnPn + Z Uppn € V7 + Vnt1 © V3,
n=7 n=m+1

the uniqueness of the representation of the elements in /3 implies that

b = bin for all ne{7,...,m},
ton +Un =ty Torall ne{m+1,..., 4},
Uy =t for all ne{tn+1,...,x}.

Therefore, assuming x> %,

Yk — W = E UnPn € Viny1.
n=k+1

This concludes the proof. O
In the sequel, if a, =0, we shall consider, for convenience, that log |a,|=0.

Theorem 2. The completion ring of Z with respect to the ring topology I can be
described as follows:

~ log |a|
E aupn:an€Z and lim —"— =0 3.
{ =1 PG n—oo log (Pn+1) }

Proof. Given aez, there exists a Cauchy sequence (wn) which represents @ and
satisfies the conditions of the previous lemma. Then a=Z:i  tnpn. For all k2>7,
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there exists my > 7 such that w,, — w,, = "'";ml tupn € W, for all my > m, > my. Since
|tu|7 < pnt1, by the uniqueness of the representation of the elements in ¥; for k >3, we
conclude that |#,/* < p,11 and so (log|#,])/[log ( pnt1)] <1/k, for all n > m,. Therefore,
the corresponding limit is zero. The converse is established similarly. O

Given an element in Z, presented as in the theorem above, it is easy to check that,
for all k£ € N, there exists m; such that

m
Z QnPn

n=1

k
< Ppms1  for all m > my. (12)

Notice that if an element of Z is written in two different ways

Z anpn = Z bnpn,
n=1 n=1

there is an ny € N such that the cofficients a, and b, are equal for all »>ny. In
addition, we have a unique representation of the elements of Z in the following sense.

Lemma 3. Every element a=3 .~ anp, € 7 is uniquely represented in the form de-
scribed in Theorem 2 with the coefficients a, satisfying the bounds (3).

Proof. Applying (12), there exists m; >2 such that

m
Z AnPn

n=1

2
< Pmi1  for all m>m;.

Consequently, | 7" | @npn| < pms1/2 for all m>my. Let b=3"1 a,p, € Z; applying
Lemma 1, we can express b=3 2, b,p, where the coefficients b, fulfill (3) for
k=1,...,mp. Thus a=3 "2, b,ps + > 41 @nPx have all its coefficients satisfying the
bounds (3). O

The next result informs us about the basic algebraic properties of the completion
ring Z.

Theorem 3. The ring Z is an integral domain which satisfies the following properties:
e if a,bc Z\Z, then abc 7\Z,

o the only units on are 1 and —1,

e for all primes peN, p is irreducible in Z.

Proof. We can express a=3) .~ a,p, and b=>_ "2 b,p, satisfying conditions of The-
orem 2. There are infinitely many nonzero a, and b,. We also express their product
ab:Z;’:l capn 1n the same fashion, where the coefficients ¢, are as follows. Let
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¢y =aiby, for m>1 we have

m—1 m—1

= ( Z anpn) bm + ( Z bnpn) am + ambmpm-
n=1 n=1

We consider three cases. If a,, =b,, =0, then ¢, =0. If a,, 720 and b,, =0, the coeffi-

cient ¢, equals a, Z::xl by, p», which is nonzero for m big enough. If a,b,, #0, then

for m big enough, we have

m—1 m—1
|@mbmPm| > <Zanpn>bm + <anpn>am~

n=1 n=1

It follows that ¢, # 0, whence abEZ\Z. The two other statements are immediate
consequences. [J

We can extend the topology 7 from Z to Z; for convenience, we denote  the extended
topology also by 7. A fundamental system of neighborhoods at zero is B= {V}m>3,
where ¥, is the closure of ¥%, € # in the new topology on Z (see [10, Theorem 5,
p. 175]). 1t is easily checked that the neighborhoods in the basis # are the following
sets:

oo
V.= {Za,,p,,elz a,e”, |a,,|’"<p,,+1}.
n=m

In the rest of this section, given the element a—Z:ol anpn Ez we shall call o; =
Zs:k aypy, and f; = L:_ll anpn. The next theorem shows a peculiarity of the comple-
tion ring Z. We need the following technical lemma to prove it.

Lemma 4. Given the element o= Zi] anpy € Z and a natural number m >2, for all
t € N, there exists a number k, >t such that, for all k > k;, we have (o)™ = Z;’ik CinDn
€V, where |cpal|' < pas1, for all n> k.

Proof. The power (x;)” can be written as

oo
(@)= > H AnPr; | @npn= Z Ckn Pn- (13)
n=k k<m<n i=l

i=1,..,m—1

Notice that the sum within the brackets has (n — k + 1)"~! terms. Let b, = max{|a;|:
k<j<n}. Given t€N, there is k, >3mt such that for all n >k, the inequalities
(bn)’™ < puy1 and n™ < P hold. For k > k,, we can now bound the coefficients ¢, in
(13) as follows:

leknl <01 (Bn)"(2a)" ™ S Ba)"(D)" < (Ps ) P (Pus) ¥ < (puy). D

Theorem 4. The ring Z is algebraically closed in Z
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Proof. Let =30 a,p. € 2\2 Infinitely many a, are nonzero. Let R(X) € Z[X] be
a polynomial of degree m > 2. We claim that R(x)+# 0. We split the polynomial R(X)
into the following sum:

m—1

R(X 4 Y)=PyX)+ Y _ PX)Y' + P, Y™,

i=1
where Py(X) is a polynomial of degree m, deg(P,)<m for i=1,...,m — 1, and P,
is a constant polynomial. For each k£>1 with ax #0, we write o = f; + oz, where Sy
and oy are as defined before Lemma 4. Therefore, R(a) =R(f; + o) splits into the
following sum:

Po(B) + > P(Bi)(ar ) = Po(Be) + . (14)
i=1

We shall show that the two terms of (14) cannot have sum zero for k big enough. There
exists k; € N such that Py(f;)#0 for all £ >k;. Given a natural number ¢ > 4, there
exists k; € N such that for all x>k, the inequalities |P(By)|* < px, (i=0,...,m — 1)
and m’ < p; hold. Besides, applying the previous lemma, there is /, € N such that
for all k>, and each i=1,...,m we have (a;)’ € Vi, i.e., (x) =3 o0, CinPn, Where
|cin|? < pny1 for all n> k. Therefore, for k > max{¢ ki, k1, 1}, the second term of the
sum (14) can be written as

> (Zﬂ-(ﬂocm)pn = bupn
n=k

n=k i=1

In this expression the coefficients of the p, are bounded as follows:

Z Pt(,Bk )Cin

i=1

'bn' = < m(pk)l/t (Pns1 )1/21 < (Pk)z/t (Pnr1 )1/2t <(Pnt1 )l/t'

Therefore, v=>3_-, b,p, € ¥;. We consider two cases. Firstly, if v Z, then R(a)=
Po(Bi) + v#0, since Py(Bx)€ Z. Secondly, if ve Z, then v=3!_ byp,€¥. If v=
bipx, then |v| > py. If 1>k, applying formula (3), then |v| > p;— p;/2> pi. On the other
hand, |Po(Br)| < (pi)'"* < pr. Consequently |Po(Bi)| < |v|, and so R(2) = Po(fx)+v #0.

O

Some examples of topological rings are obtained if we choose particular sequences
( Da)nen, let us consider two examples:

First, the natural numbers p, being prime for all n > 2.

Second, py=1 and p,= p" for all n>2, with p prime. In this case, the ring
topology Z is finer than the p-adic topology on Z. Both completions are related as
follows.

Lemma 5. The completion Zisa subring of the ring of p-adic integers Z,,.



J.E. Marcos!Journal of Pure and Applied Algebra 129 (1998) 149-172 157

Proof. We consider the natural homomorphism from the completion of (Z,.9) into
Zp. 1t suffices to check that the kernel of this continuous homomorphism is zero.
Let a=3"" a,p™ be a nonzero element of the completion (Z,ﬁ— ) presented as in
Lemma 3. Let a,, be its lowest index nonzero coefficient. Now we consider this series
to be summed in Z,. The new sum is the image of the original one under the natural
homomorphism from the completion (2,.7' ) to Z,. We show that the p-adic sum is
not zero.

Observe that, for a,b,tc€Z, 0<|b|< p’, implies |b|,>|p’|, > |ap’|,, where | |,
denotes the p-adic absolute value. Using this remark and (3), we obtain inductively
that, for k > m,

k+1

k
! ]
> anp™ > a,p"
n=m n=m

Hence, the infinite sum has the same p-adic valuation as a, p™ and is not zero. [J

k
Z anpn! + ak+1p(k+1)!

n—=m

P P P

Notice that, because of Hensel’s lemma, there are in Z, integral elements over Z
which are not in Z. In this instance, although the sequence (p™) converges to zero,
p is not topologically nilpotent, because (/%) does not converge to zero.

Third, p;=1 and p,=6" for all n>2. We get the completion ring which satisfies
ZcC 2 C Zg, the last one being the 6-adic integers, which is not an integral domain,
but Z is.

Proposition 6. If p, is prime for all n>2, then Z is not a unique factorization
domain. The same result holds if p,= p" for all n>2, with p prime.

Proof. We only show the first statement. Let (g;);cn be the sequence of all prime
numbers. We construct a nonzero element o € Z which is a multiple of all ¢;. We pick
out a subsequence of (p,)scn, denoted by (py, )icn, so that p, >(qi1q2---qiy1)™, for
all ieN. We define “=Z?:1 biq1 - - - q: pn,, Where the positive integers b; are to be
defined inductively as follows. Firstly by =¢, and if by,...,b,_; have already been
selected, then we choose b, € N such that 0 <b, <gmy1 and Z:":l biqi - - qipn, 1
a multiple of g, ;. Therefore « is a well defined element of Z which is a multiple of
all ¢;. OO

3. Completable locally unbounded field topologies on the field of rational numbers

In this section we give a topology on the rational field @ similar to the one con-
structed in Section 2. The elements p, of the sequence (p,),cny defined in (1) are
required to be prime for n > 2. We define for all m e N the following subsets of Q.

I
a .
Wm = Z b_npn: ’anlm, |bnlm<pn+ls bn coprlme to Pn o (15)

n>m
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In the rest of this section, given any sum Eflzm (an/bn) pn € Wn, we will assume that
the requirements in (15) are satisfied. In order to prove that this family of subsets is
a fundamental system of neighborhoods at zero for a field topology, we need some
technical lemmas.

Lemma 7. If the sequence (pn)ncn Satisfies the properties (1), then

@) TTry (p)” <(Pmar)m,
() ITrei Pn < (P2, for all m > 3.

Proof. An elementary use of induction. O

Lemma 8. If te N, m> 5t and Zf.:»; (Qn/bn) pn € W, then

((Z; p”) ﬁ|b"|>t<pz+1.

n=m
Proof. Let us consider the product of the denominators

/ ! I 1/m
st (175

n=m+1

n

Lemma 7(b) provides a bound for the expression in the brackets; therefore,

!
[T 2] < (prap)2metim

n=m

The inequality // < p;4, holds for / > 3. Whence

!
(Z ) Hlb | < <Z|an|pn> Hlb | <1 (P pi (pip1) T L

n=m

R
< (pr)HVHVr Tt < (p Y. O

Lemma 9. For all m> 15, the elements of W, are represented uniquely in the fol-
lowing sense. If

b, pn—zd DPn € W,

n>m n>m

with a,, by, ¢, d, satisfying conditions (15), then a,/b, = cy/d,, for all n>m.

Proof. Suppose that a € W, can be represented in two ways satisfying conditions (15):
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We assume that a,/b; # ¢;/d;; then

!
_ Z a,d, — cq,b,
= n=m bnd" b

Clearly, we have |a,d, — cpbu|’ < pny1 and |b,d, > < p,yy for n=m,...,1. We denote
en = ayd, — c,b, and f, =b,d,, and we think of Zizm (en/fn)pn as an element of Ws.
Reducing to common denominator, we get

! I8
Hn:m fn ( Zn:m lpn)
S
]
Hﬂ=m f"
The numerator splits into the sum
I -1 -1

an(z fpn) + (an)elpl- 17)

n=m n=m 7" n=m
Considering Lemma 8, we have

-1 -1 e
I=I Ja <Z 7:Pn>

n=m

=0. (16)

<py

and since f; and p, are relatively prime, we obtain that the first term of the sum (17)
is relatively prime to p;. Since the second term is nonzero and divisible by p;, the
numerator of (16) is nonzero and we have a contradiction. [

Lemma 10. Let m > 15 and let

be an element of Wys with a,, b, satisfying conditions (15). If e€ Z\{0} and f €N
satisfy |el®, f3< pm, then

!
e Za,,
? 7éan Ep"'

In particular, e/f & W,

Proof. We reason by contradiction. Suppose that

e an
—ZZ b—anWU. (18)
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But this is impossible, since p; and b, are coprime and p; > |e|>. Now, we assume that
there are more than one summand in (18) and aq; #0. It is clear that

-1

Z %pn € WlS

n>m "
also. We can group this element into a single fraction

-1
Ay
b, Dn-

n>m

aulo

Using Lemma 8, we conclude that |c|?,|d|* < p;. We convert the equality (18) into the
following one:

a; e ¢ ed—cf

— pl = —_— = — =

b, f d fd

But, considering that |ed —c¢f| < p; and ( p), b;) = 1, we reach again a contradiction. [

Theorem 5. The family By ={Wn}men is a fundamental system of neighborhoods of
zero for a field topology on Q.

Proof. We have to see that the family %, satisfies properties (4)—(9). It is easy to
check that (4), (5) and (7) hold. For property (6) one needs Lemma 8; the product of
two elements in the neighborhood W; must be written analogously as we did in (10).
Property (8) is a consequence of Lemma 10. The proof of (9), i.e., the continuity of the
inverse map, is as follows. Given a neighborhood W, € #,, in view of Lemma 8, there
exists m > 155 such that each element g = Zi=m (an/by,) pn € W, satisfies the inequality

(ol

Let us show that (1 + W,,)~! C 1 + W,. Given G_Zn o (@n/bn) pn € Wy, We construct
the inverse (1 +a) =1+ Zn n (Cn/bu) D, Where c,, d, are determined inductively
so that (1 +a)~! €1 + W,. For the equality

(1+pr,,) (1+pr,,)_ ;

to hold, it is sufficient that the equations

3s

<Di+1- (19)

Am C
<E+3_+b—d pm)Pm 0, (20)

j=1

Cpn A
<1+Z ) p,+bp, <1+Za;pn)=0, j=m+ 1.1 (21)

n=m
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are satisfied. From (20), we get
Cm  —Qm
dn b+ ampm’

it is clear that |cp|°, |dn|* < pm+1. We now proceed inductively. If we have determined
¢, and d, for n=m,...,j — 1, let us find out ¢; and d;. From (21), we deduce that
1 Cn

—aj(1+2’nmdpn)nf  (Bady)

d; (1 + Zn . —p,,) H (b,,d,,) '

If ;=0, we set ¢;=0 and d;=1. We assume that @; #0. Applying the induction
hypothesis and Lemma 7(b), we have

j—1

[I4< H P < (),

n=m n=m+1

This result together with (19) implies that the denominator d; satisfies

d;|* <(ps1 )1/3(Pj+1 =2 < Pi+1-

One can get an analogous bound for the numerator. The denominator d; splits into the
sum

_ j—1
(1 + Z 2 p,,) T1 edn) + @y [ Bndn-
n=m n=m

Since the left-hand term of this sum is relatively prime to p;, the denominator d4; is
too. Thus property (9) is proved. O

We shall denote this topology by 5. It is a consequence from Lemma 9 that the
topology 7, defined in Section 2, is finer than the topology %, restricted to Z. The
topology 7 is, indeed, strictly finer than J3|z. Let us consider the sequence (¢ )m>3,
where

cm:%pm+%prn+l- (22)

It converges to zero in Z;|z, but is not in ¥is, since a representation of ¢, in Vs (see
(2)) would be also a representation in s distinct from (22). Since every neighbor-
hood W, N Z contains infine primes, 3|7 is not an ideal topology, i.e., it does not
have a fundamental system of neighborhoods at zero consisting of ideals. Considering
[5, Lemma 11], we deduce the following result.

Proposition 11. The topological field (Q, 73) is not locally bounded.

The proposition above can also be deduced from the classification of the locally
bounded ring topologies on Q given in [8,9,12,p. 392 or 14,p. 195]. The topological
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field (@, 77) is not complete. In the next theorem we describe its completion, for which
we need the following result.

Lemma 12. Let (o, )men be a Cauchy sequence in (Q, 7). There exist two sequences
of integers (ay)nen, (bpnen, With by, p, relatively prime, and a Cauchy sequence
(Om)men Which is equivalent to (o, )men and satisfies @, = Z:zl(a,,/b,,) Dn, for all m.
In addition, |a,>', |b,|>' < pus1, for all n>31.

Proof. There exists a subsequence (yn Jmen Of (% )men Which satisfies Y, —Vm, EWni1,
for all m;,m; > m. By Lemma 9, there is unique representation of the elements in W,
for m > 15. Besides, for m > 31, the inclusion W51 + W,, C W;s holds. For all m> 31,
the difference y, — y3; belongs to W5;; then we can write

Ym = V31 + Z b’"" Prs (23)
n=31

With |@mu|*!, |bmnl*! < Prit, bmn Telatively prime to p, and u, >m. We set a;/b; =3,
and, for m <31, we define w,, = y3;. For m>31, we define

Om = 731 + Z mn

n31

Let us show that (w,)men is a Cauchy sequence equivalent to (y,)mecn- Given a
neighborhood of zero W, in the basis %, with m > 31, let us see that y, — @y € W,
for all k> py, (pn defined in (23)). Since yx — Y € Wpt1, We can write

K
u
Ve—Im= Y, = Du
Un
n=m+1
with u,, v, satisfying conditions (15). Then

)’k—)’31+zb Pnt Z —pn

n

n=31 n=m+1
a U ~ U
Y mas Y () 3
n=31 n=m+1 A=+l "

(We consider u,>m; if u, =m the proof follows analogously). Since

i

amnpn+ Z _‘Pne%l"'W C Ws,

n=31 bin n=m+1
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by the uniqueness of the representation of elements in Ws, we conclude that

Gmn _ Fkn o all ne {31,...,m},
bmn bin
Amn Uy (7

+—=— forallne{m+1,..., U},
bmn Un bkn { }
&:a—k’—l- fOl' allnE{,um'i-l,-n,K}-
Up bkn

Therefore, assuming x >k,

K
U
Yk — O = Z v—npnGVVm—H-

n=k+1 "

The lemma is proved. [

Theorem 6. The completion of Q with respect to the field topology 9> can be written
as

Q= Pn: lim

SRan o log(max{lay, [ba[})
b, n—o0 log (pns1)

=0, b, coprime to p,,}. (24)

n=1

Proof. Let a € Q. Applying the lemma above, there is a Cauchy sequence

m a
(COm)mGN: (Z Z’pn) s
n=1 "

meN
where a,,b, € Z and b,, p, relatively prime, whose limit is o. Then

oo
a'l
o= — Dn-
bn

n=1

Given a neighborhood W in the basis #, with & > 31, there is my; > 31 such that for
all my >my > m; we have

my a
n

Oy — O, = E Z_p"GWk'
m=m n

Considering that |a,|>!,|b,1>! < pr+1 and the uniqueness of the representation of ele-
ments in W for k> 15, we conclude that [a,|%,|b,|* < pps1 for all n>my, and

log (max (|a,|,[Ba])) _ 1
IOg(pn-H) Kk

Therefore, the limit of the left-hand side is zero. The converse is similarly esta-
blished. [
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In what follows, given any sum Y 2, (an/b,) p, € Q, we will assume that the con-
ditions in (24) are satisfied. Notice that in (24) it is equivalent to request b, relatively
prime to p, for all » except possibly a finite number.

In order to prove that the completion ring Q is actually a field, we need the following
result.

Lemma 13. Given any element 3 > (an/by) pn E@\@ and any integer t €N, there
exists my, € N such that for all m>m, we have

((g pn> illlbnl)t < Pmil.

Ifm>m and Y, _ (ay/b,) pn = Cm/dym, where c,, and d,, are relatively prime integers,
then |cyl', |dnl" < Pmsi-

an
bn

Proof. It suffices to bound the expression

(Z ianlpn> L1 18n| < mtm p [ ] 121, (25)
n=1 n=1 n=1

where o, = max{|ai|,...,|am|}. Given t€ N, let r =6¢. There exists ng € N such that
|Bo|” < pry1 and n < (pni1)'*, for all n>ng. There exists n; € N such that |a,|” < ppii
and []5" |ba] <(pms1)™, for all m >n,. Applying Lemma 7(b) we obtain

n=1
m—1 r m

(o] < {1 mtmarm
n=ng n=no+1

Therefore, for m > max{ng,n;,7}, expression (25) is bounded as follows:

(mcx,,,p,,, (ﬁ lbn|> <1:[ V’n\) lbm|>

< (Pt " Pt (Pms1) "™ (Prna1) ™ (Prs1 )" P

mtl < an+1-
The lemma is proved. O

The previous lemma can be easily generalized to the following result.

Lemma 14. Let any element 2 (an/bu) pn € @\@ and any polynomial R(X) € Q[X]
be given. For each t € N there exists m; €N such that for all m>m, we have

- a, Cm
R 2o | =1,
( n=1 bn pn) dm

where ¢, and d,, are integers that satisfy |cm|’, |dn|' < Dmt1-
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Theorem 7. The completion Qisa field.

Proof. Let a=3""° ,(ax/by) pn E@\@ presented as in Theorem 6. We construct its
inverse f= 3".2,(c:/dn) pn, Where cy,d, € Z are defined inductively. We suppose that
a; #0. We set ¢; =b; and d| =a;. Now suppose we have defined ¢, and d, for all
n<m. The product aff can be expressed as follows:

oo m m—1
a) 1 ay, (¢
b_1d1 mg ( g b_ ; d*ﬂPn)Pm-

If the coefficients of p,, in the product «f are zero for all m>1, then f=a~!. Thus,
we get

_ 16 _
—ap anz ' dﬁpn ~dm (anzll d—,,p"> Hnm=11 dy by

Cm _
dm N m a, m—1 '
B Z,,-l 5, P b (Zn=1 T p,,) [17= dubn

(26)

The numerator and denominator of the right-hand side are integers. If a,, =0, we set
¢m =0 and d,, = 1. Now, assume a,, # 0. Given r; > 3, we show that there exists m; € N
such that

|dn|" < Py for all m>my. 7

We call »=3r). By Lemma 13, there exists / > 6 such that, for all m > I, the denom-
inator d, satisfies

|dn|” < (1‘[ \d, |> b" p,.> 115
\n=t " n=1

We call d z(l_[f,;} |d.|)". Applying (28), we inductively get

m—1 r
< ( I1 |d,.r> Pmst. (28)

\n=1

|di|" < dPl+1’
|dl+1|r < d2p1+lpl+2,

ey

k
|dii|” < d* <

2k—n
DPivn | Pit+i+1-
1

n=

Using Lemma 7(a), the expression on the right-hand side is bounded by
& &
a* (Pryasi )3/(I+k)Pl+k+1 <d? P%+k+1-
From these inequalities we conclude that

ldn|” <d¥p2,, forall m>1.
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There exists my € N such that dr" < Pm, for all m>my. Consequently,
|dn|” < pyy  for all m> max{l,mo}

and (27) is proved. It remains to show that the denominator of (26) is relatively prime
to pm, for m big enough. This is an easy consequence of the inequality

)i

n=1

< pm for all m big enough.

One can find an analogous bound for the numerator. Then we have constructed the
element € Q verifying conditions of Theorem 6. [1

The topology Z> can be extended from Q to @ as done in Section 2; we shall
denote this extended topology also by Z;. A basis of neighborhoods at zero is 932
{W}tm>1s, where W,, is the closure of W, € %, in Q. More explicitly, we have

o
W, ={ cbl—"p,, € Q:{an|™, |ba|™ < Pr+1, ba coprime to p,,}.

n=m

For any sum > o (an/bs)pn€ W, we w1ll understand that the above requirements
for the cofficients are satisfied. The ring Z, constructed in Sectlon 2, is included in
Q. Nevertheless, (Z, J) is not a topological subring of (@,Jz), the sequence (cp)
defined in (22) converges to zero in J3, but not in 7. Considering this and the fact
that 7, is included strictly in W, N Z for all m> 15, we conclude that the topology 7~
is strictly finer than J;|5. In the next section we see that Q is not the quotient field
of Z.

In the sequel, given the element o = E;’il(a,,/b,,) Pn € @, we denote o =
o2 (an/bn) pn and i = Eﬁ;ll (an/bn) p». The next theorem shows a remarkable prop-
erty of the completion field @; we shall need the following result.

Lemma 15. Given a= Y o (an/bs)pr € @\@ and meN, for all t €N there exists
k>t such that, for all k >k,

oo

(ak)m = :{—pn € Wt;

ie., |cknl, |dk,,|’ < ppy1 and dy, relatively prime to p,, for all n>k.

Proof. The proof is similar to that of Lemma 4, although it is more cumbersome, since
one must take care of denominators. We make use of Lemma 7(b) here. O

Theorem 8. The rational number field is algebraically closed in Q.

Proof. Let a= Y 2 (an/bn)pn € @\@. Infinitely many a, are nonzero. Let R(X) €
Q[X] be a monic polynomial of degree m >2. We claim that R(«) # 0. As we did in
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the proof of Theorem 4, we split the polynomial R(X) into the following sum:
m—1
R(X +Y)=Po(X)+ > PX)Y' + Y™
i=1
For each £>1 with a; #0, we write o = f§; + oy, where f; and a; are as defined before
Lemma 15. Therefore,

m
R(x) = R(Be + ) = Po(Bi) + D BBi)(ew) := Po(Bi) + v. (29)
i=1
We claim that, for & big enough, this sum cannot be zero. There exists k; € N such
that Py(fiy)#0 for all £ >k;. Given a natural number 7> 15, by Lemma 14, there
exists k; € N such that for all k>4, and i=0,...,m — 1, B(B:)=e;/f;, for some
e;, f; € Z with le;|™, | f;|™ < pi. There exists ko such that m' < py, for all k> k. In
addition, by Lemma 15, there is / € N such that for all k> and i=1,...,m, we
have (ak)i = Z;x:)k (Cin/din) Pn EWJMU where IC,-,,P'"', 'dianr < Puy1 and dy, coprime to
pn for all n > k. Therefore, for k > max{t, ko, k1,k;, 1}, the second term of the sum in
(29) can be written as

Z(ZPUM )

n=k

In this expression the coeflicients of the p, can be expressed as follows:

Z ei ¢ _ [Ti1 (fidin) 212 (€if fi)(Cinldin) _ Gn
ft in H;n=1(fidin) hn.

Here the numerator is bounded by

1Gal < TTCPOY™ (Pas) ™) m( i)V (D )P

i=1

< (PO (Par))"P (PO ()™ (P )™ < (1) (P )V < (Par).

The denominator 4, is bounded analogously. In order to show that 4, is coprime to
DPn, it suffices to consider that dj, is coprime to p, and the bound

197
i=1
Therefore, v= Y7 P(Bx)(0k)Y = 3 poy (gn/hn)pn € W,. We consider two cases.
Firstly, if v¢ Q, then R(a)=F(fi) + v#0, since Po(fir)€ Q. Secondly, if veQ,
then o= 3",_; (gn/hs)Pn € . Since Po(Br)=eo/fo, with |eo™, |fol™ < pi; applying
Lemma 10, we conclude that Pp(f;) #—v. Thus R(a)#0. O

< H (o)™ =(p) < p, forall n>k

i=1

Just as in p-adic analysis, there are nonconstant functions whose derivative is identi-
cally zero. Let us give an example. We define a function f: (Z T) — (@ ,) as
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follows; for each a =32, a,p, € Z represented according to Lemma 3, f(3 2, @, p»)
= Zn_ a, pny1- Fixed an there exists a neighborhood of zero E@ such that
fla+h)=f(2)+ f(h) for all h€7V,,. Therefore f is continuous in Z. The derivative
f'(2) is, as usual, defined by

reon oy SR — f(a)

7= im S

Wthh in this case equals llmh_,o f(h)/h. We show that this limit is zero. Given
W, € B,, there exists W, € B, such that Wy(l + W)~ CW,. Let h= o b €
Pm\{0}, with |by|*" < pami1; We can assume that by, # 0 (if not the proof follows

similarly). Then

f(h) _ E::2m bnpn+1

h B Z::hnb"p"
o] b -1
=<Zb p,,+1> <1+ Z ) €Wl + W)™ W
n=2m 2m P2m n=2m+1 2m 2m

Consequently, lim,_,q f(h)/A=0.

4. Other field topologies on the rational number field

In this section we present other examples of field topologies on the rational field
which are similar to the topology in the previous section. All the proofs run anal-
ogously to those in the above section and we will omit them. The underlying idea
for the topologies in this article is taken from Section 3 of [6]. The following field
topology on @ is even more according to Mutylin’s example. Let (p,),en be any
sequence of natural numbers safisfying conditions (1), (following a suggestion of N.
Shell, we do not require that the p, be prime in this case). For m >2 we define the
sets

Q,
Z b, _:‘Z: D |an|mylcn|m < Pn+l> 0< |bn|m < Pn

Notice that 73, C W, if the p, are primes. The family {#"},>, constitutes a fundamen-
tal system of neighborhoods of zero for a Hausdorff field topology on the rational field.
We denote this topology by .73. Now the completion is a field that can be expressed
as

S G S N L
Z b ‘l'—lcn : l°g(Pn+1) log(Pn) ’
"Pr and b,#0, for all n
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This field fulfills properties analogous to those of Q@ constructed above. In particular,
O is algebraically closed in 2. Let us point out the following subring of 2.

> a, . log|a,| . log |by|
R= — pp : lim = lim =0;.
{n:] b, ¥ log (pns1) log (pr)

If py=1 and p, is prime for n>2, we have the subsequent algebraic strict inclu-
sions

ZcRc2cq.

The ring Z is the one constructed in Section 2. I have not been able to determine
whether 2 is the quotient field of R or not.

If we take the sequence (pa)aen to be py=1 and p,= p™ for n>2, with p prime,
we get another field topology on @ by defining a fundamental system of neighborhoods
at zero {U,, }men, Where

)
!
Uy, = gﬁpn!—s,, . ‘anim’\bn‘m < p(n+1)!’ 0<s, < %, b, coprime o p

n>m

We denote this topology by J4. It is finer than the p-adic topology on Q, but coarser
than 73 (assuming p,= p" for n>2). The completion is a field which can be ex-
pressed as

&, tim o malab b} g
Qr=Y) Zpr (n+1)! n!
" b, coprime to p

=0,

n=1

The rational field is also algebraically closed in this field. We now take into consider-
ation the local ring

Lipy= {% €Q : b coprime to p}.
In this ring we define the following sets
La
Sy = Z b—"p"! s lanl™, |bal™ < PO b, coprime to p
n>m r

The family {Sy}men is a fundamental system of neighborhoods at zero for a Hausdorff
ring topology on Z,y. For notational convenience we set p” =1. The completion is
the ring

= < 1 nls [Un
Zm:{ G ot i 28l 1a]))

5 P it 1) =0, b, coprime to p}.

n=0
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This ring is also a topological ring, in which the family {S,}m>2 is a neighborhood
basis at zero, where

{Zz,—p €Zip - lanl™, low |’"<P("+l)‘}

We denote this topology by Zs. This completion ring is a local domain (possibly not
Noetherian) whose maximal ideal is

M- { AR 1L S (EAN L))

5 : 1) =0, b, coprime to p}.
' !

n=1]

Its quotient field K can be represented as follows.

'] ']
- }:(1,, n! . §:a" nt .z
n=0 n=0

The field K can be furnished with a field topology, for which &s={p’'Sn}imen
constitutes a fundamental system of neighborhoods at zero (see [10, Theorem 2, p. 24]).
We denote this topology by 6. I have not been able to get the field X as a completion
of Q for any ring topology. Nevertheless, (K, 75) is a complete field, which we prove
using an idea from [15, Lemma, Theorem 1].

Proposition 16. The topological field (K, 7s) is complete.

Proof. Let (a, ),,GN be a Cauchy sequence in (X, ). There exists np € N such that
Ol — Oy € S;cC Z( p) for all m,ny > > ny. In particular, o, —o,, € Z( p) for n > ny. Therefore,
we can assume that oz,,eZ(p) for all n. Since the topology 5 is coarser than
restricted to Z/(\p), the sequence (ay,),en 18 Cauchy in (Z/(\p), 7s) too. Thus, it converges
to an element « € Z;). Let us show that « is also the limit of (a,),en for the topology
Ts. We set f, =a, —a and shall prove that (f,).cn is a null sequence for the topology
. Given a neighborhood of zero p’S,, € B, there exists m;,7; € N such that p’ S, +
S, C Sy, for all »>r,. Besides, there exists ng € N such that g, — f,, € p'S,,, for all
ny,ny > ng. For each r > 7y there exists n, > ny such that f, €S,. Therefore,

ﬁﬂl :(ﬁm - ﬁ",) + ﬁ"r € Pl‘gml +S_r‘

We conclude that

ﬁm S ﬂ (Pl gml + gr)g pl gm,
reN

for all ny >ny. O
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We have the following strict inclusions of rings and fields (taking p,= p™ for
n>2):

Qc@\l’c@p.
U U (30)
7cZCK

The ring Z is the one constructed in Section 2, and Q » the p-adic field. Neither ring
nor field in (30) with its corresponding topology is a topological subring of any other
in the diagram.

5. Topologies on k[ X] and £(X)

In this section the same ideas are used to construct a ring topology on k[X] and
a field topology on A(X) with similar properties. We shall omit the proofs. In what
follows, Qn(X), R,(X) will denote polynomials of k[X]. We define in k[X] the fol-
lowing subsets:

(n+1)

= ZQ,,(X)X"' deg (Qn(X)) <

n>m

The family {U, }men is a fundamental system of neighborhoods of zero for a Hausdorff
ring topology on k[X}, which we denote by Z7. This topology is finer than the ring
topology whose neighborhood basis at zero is the family of ideals {(X")}.en.

Proposition 17. The topological ring (k[X], J7) is not locally bounded.

Proof. The field & is a bounded set with respect to this ring topology. Obviously, the
topology is not an ideal topology. Applying [12, Theorem 37.18] or [1, Theorem 11]
we conclude that (k[X],77) is not locally bounded. [J

For notational convenience, if Q,(X)=0, we set deg(Q,(X))=0. The completion
of (k[X],77) is the ring

k[X]—{a—i-ZQn(X)X"‘ ack and n&rgodi(g}%lgif—nzo},

n=1

This ring is, algebraically, a proper subring of £[[X]]. In the field k(X)) of rational
functions over £ we define the following sets

Z OnX) s, _ deg(Qn),deg(R,) <(n+ 1)!/m,
“~ R, 0~ T 0<sy <nl/m, Ry(0)#£0 '
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The family {W,,}men is a neighborhood basis at zero for a field topology on k(X).
The completion k£(X') is a field constructed analogously to the previous examples. Once
again, k(X ) is algebraically closed in its completion.
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