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1. Introduction 

All fields and rings considered in this paper are assumed to be commutative. We 

recall that a subset S of a commutative topological ring R is bounded if given any 

neighborhood V of zero, there exists a neighborhood U of zero such that SU c Y If 

R is a field, this is equivalent to saying that given any neighborhood V of zero, there 

exists a nonzero element x E R such that Sx C V (see [7, 10, Theorem 3, p. 42 or 14, 

Lemma 12, p. 261). A ring topology on R is locally bounded if there is a bounded 

neighborhood of zero. A nonzero element a of a topological ring is called topologically 

nilpotent if limn+oo a” = 0. A field with a ring topology is called completable or full 

if its completion is a field. 

In 1964 Hinrichs [2] constructed, using an inductive procedure, ring topologies on 

the ring of integers Z which do not have any basis of zero neighborhoods consisting 

of ideals. In 1968, with a similar method, Mutylin [6] constructed completable locally 

’ Some results in this paper were presented at the “Seminar on General Topology and Topological Algebra”, 
CUNY. New York. 
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unbounded topologizations of the rational number field CD. In this article we construct, 

in an explicit way, some locally unbounded field topologies on the rational field. Its 

completions are fields in which Q is algebraically closed. We also show ring topologies 

on the ring of integers with similar features. An analogous development can be given 

for ring and field topologies in other domains and fields, as we suggest in Section 5, 

with the ring of polynomials k[X] and its quotient field k(X). 

We obtained first the topologies and the completion fields introduced here by means 

of nonstandard analysis. For an introduction to this subject see [3,11]. We follow a 

standard treatment in order to get a more accessible exposition and a broader audience; 

but doing that, we have to add some technical lemmas and the proofs become more 

cumbersome. 

Throughout this article parameters a, b, c, d with subscripts will denote rational 

integers and (P&N will denote a sequence of natural numbers which satisfies the 

following properties: 

p1 = 1, p2 2 2 and for all il E N, p,,+l 2 (p,)“. (1) 

By induction, p,,+l 2 2”! for n E N. Moreover, P,,+~ 2 n” for n 2 3. 

2. Some ring topologies on Z 

We are going to define some ring topologies on the rational integers Z. We show 

some algebraic properties of the corresponding completions in Theorems 3 and 4. For 

this purpose we take a sequence of natural numbers (P&N which satisfies (1). For 

each m E N, we define the following subset of Z: 

(2) 

For m 2 3, the given representation of the elements of V, is unique. The following result 

provides us a unique representation of rational integers according to this representation 

of the elements of V,. 

Lemma 1. Each element a E Z can be expressed uniquely as a= c”,=, anpn with 
a,, E h satisfying for all k E N the condition 

k 
and, if equality holds, then c a,,p,, >O. 

n=l 

(3) 

Proof. Let ps be the smallest element of the sequence (P&N which satisfies [cl] 5 ps. 
There are integers a,, r, such that a = asps + r, with Ir, 1 5 ps/2 and, if equality holds, 
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then r, = ps/2 according to the following cases: 

l ifp,/2<a<p,, thena,= andr,=a-p,, 

l if -p,/2 =C a 5 pJ2, then a, = 0 and r, = a, 
l if-p,<al -ps/2, thena,=- andr,=a+p,. 

Now, we proceed with r,; we can express r, = a,_lp,_l + r,_l, where Irs_l I< ps_1/2 
and, if equality holds, then r,_l = ps-l 12. We continue till we get the expression 

a = xi=, a,,p,,. Let us show the uniqueness by contradiction, Suppose that an integer 

is represented by two different sums satisfiying condition (3): 

c anpn = c bnpn. 
?I=1 n=l 

If s-cm and b, #O, we can rearrange the above identity, 

ganpn - $bnpai = 1$6.pni. 

Taking into account the bound in (3), we deduce that 

s 

c anon - 
n=l 

and 

m 

I i 
c bnpn 2 P~+I, 

s+l 

yielding a contradiction. If s = m, let j be the largest index at which a,, # b,; we get 

the identity 

and 

j-l 

c anpn - 
n=l 

again, a contradiction. q 

It is easy to check that, for m > 3, the representation of the elements of V, given in 

(2) coincides with that of Lemma 1. 

We recall that for a sequence {U,,}nE~ of subsets of a commutative ring R to be a 

fundamental system of neighborhoods at zero for a Hausdorff ring topology .Y on R, 
it suffices that the following properties hold: 

For all n 0 E U,,, U,, = - U,,, lJn+l C_ U,,. (4) 

For all n there exists k such that Uk + Uk c U,,. (5) 

For all n there exists k such that ukuk C U,. (6) 
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For all n and x E R there exists k such that xuk C U,,. (7) 

n un={O]. (8) 
ilEN 

If, in addition, R is a field, then Y is a field topology if {U,},,N also satisfies the 

following condition: 

For all n there exists k such that (1 + uk)-’ C 1 + U,,. (9) 

See [4,5,10,14] for instance. It is left to the reader to check that the subsets V, defined 

in (2) satisfy properties (4)-(8) (cf. [5, Paragraph 11). In order to prove property (6), 

the product of two elements in the neighborhood K, 

n=k n=k 

must be written grouping the coefficients in the following way 

@=(akbkPk)Pk + c .:,, (( g%PJ bm+am (Zb.P$) Pm. (10) 

Thus, we deduce the following result. 

Theorem 1. The family 28 = { Vm}mE~ is a fundamental system of neighborhoods of 
zero for a Hausdorff ring topology on Z. 

We shall denote this ring topology by Y. This topology does not have an ideal base 

of zero neighborhoods and, therefore, it is locally unbounded (see [5,13]). 

The topological ring (Z, S) is not complete. We shall construct its completion 2, 

which is, as usual, the quotient ring of the ring of Cauchy sequences by the ideal of 

all sequences converging to zero. We say that two Cauchy sequences are equivalent if 

they represent the same element in this quotient ring. In the sequel, C,“=, a,,p,, will 

mean the element in 2 which is the limit of the Cauchy sequence (CL, anpn)mEN, 
in case it exists. In order to describe this completion in an easier way, we need the 

next lemma. 

Lemma 2. Let (cL,,,)*~N be a Cauchy sequence in (Z,F). There exists a sequence 

(tn)nEN and a Cauchy sequence (w,),,,~N which is equivalent to (cL,,,),,,~M and satisfies 
w, = CL, t,,p,,, for all m. In addition, lt,,1’<p,,+l, for all n > 7. 

Proof. There exists a subsequence (Y~)~~N of the sequence (u~)~~N which satisfies 

y,,,, - yrnz E I&+1, for all ml, m2 2 m. The representation of the elements in V, in (2) is 

unique for all m 2 3. Besides, for all m > 6, the difference 

we can write 

Ym = 76 + F tmnt)n> 
n=7 

y,,, - 76 belongs to V7. Thus 

(11) 
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with ]&,,I7 <p,,+l and the index ,u,,, >m. We set tl =y6 and we define 

Let us show that (w,),~N is a Cauchy sequence equivalent to (Y)~~N. Given a neigh- 

borhood of zero Vm+l in the basis @ with m 2 6, let us show that Yk - ok E &,+I, for 

all k>pmL,. Since Yk - ym E &+I, we can write 

with Jz#+’ <p,,+~, for all n>m+ 1. Then 

Yk = Y6 + 5 &nn$‘n + e U,p, 

n=7 n=m+l 

=Yb+&nnPn+ 5 (tmn+Un)pn+ 2 u,,p,. 

n=7 i7=lWtl n=lh+l 

(We do the case ,uL, > m; if ,u~ = m, the proof follows similarly.) Since 

Pm K 

c tmnPn + c %lp, E v7 + En+1 c. v3, 

n=7 n=m+l 

the uniqueness of the representation of the elements in 6 implies that 

btwl = tkn for all 

tmn + 2.4, = tb for all 

un = tkn for all 

Therefore, assuming K > k, 

Yk - ak = 2 %lpn E 

n=k+l 

This concludes the proof. 

n E (7,. . , m}, 

nE{m+ l,...,~~), 

nE{pr?l+ l,...,K}. 

V m+l. 

0 

In the sequel, if a, = 0, we shall consider, for convenience, that log la, 1 = 0. 

Theorem 2. The completion ring of E with respect to the ring topology F can be 

described as follows: 

+CO 

xa,p,:a,EZ and lim 1% IanI =o 
n=l 

n-cc 1% (Pn+l) . 

Proof. Given a E 2, there exists a Cauchy sequence (0,) which represents a and 

satisfies the conditions of the previous lemma. Then a = C,“=, t,,p,,. For all k 2 7, 
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there exists mk 2 7 such that o,, - CO,,,, = cr$,, @n E vk, for all m2 > ml > mk, Since 

lM7 < Pn+l, by the uniqueness of the representation of the elements in & for k > 3, we 

conclude that jtnlk < p,,+l and so (log 1&I)/[log(p,+l)] < l/k, for all n 1 mk. Therefore, 

the corresponding limit is zero. The converse is established similarly. 0 

Given an element in 2, presented as in the theorem above, it is easy to check that, 

for all k E N, there exists mk such that 

k 

<pm+1 for all m > mk, 

Notice that if an element of 2 is written in two different ways 

(12) 

there is an IZO E N such that the cofficients a,, and b, are equal for all n > izo. In 

addition, we have a unique representation of the elements of ?? in the following sense. 

Lemma 3. Every element u = C,“=, a,,p, E 2 is uniquely represented in the form de- 

scribed in Theorem 2 with the coejicients a,, satisfying the bounds (3). 

Proof. Applying (12), there exists m2 2 2 such that 

I I 2 2 anpn < pm+_1 for all m 2 m2. 
n=l 

Consequently, 1 cr=:=, a,p, / < p,,,+1/2 for all m 2 m2. Let b = CrL, a,,p, E Z; applying 

Lemma 1, we can express b = CfiI b,p, where the coefficients b, fulfill (3) for 

k=l ,..., m2. Thus a=Cp, b,,p, +cz+, a,,p, have all its coefficients satisfying the 

bounds (3). 0 

The next result informs us about the basic algebraic properties of the completion 

ring 2. 

Theorem 3. The ring 2 is an integral domain which satisfies the following properties: 

l tf a, b E z\Z, then ab E f\H, 

l the only units of 2 are 1 and - 1, 

l for all primes p E N, p is irreducible in 2. 

Proof. We can express a = c,“=, a,,p,, and b = C,“=, b,,p, satisfying conditions of The- 

orem 2. There are infinitely many nonzero a,, and b,. We also express their product 

ab = C,“=, c,p,, in the same fashion, where the coefficients c,, are as follows. Let 
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cl =aibt, for m>l we have 

We consider three cases. If a,,, = b, = 0, then c, = 0. If a, # 0 and b, = 0, the coeffi- 

cient c, equals aI, CrL,,’ b,p,, which is nonzero for m big enough. If a,,,b,,, # 0, then 

for m big enough, we have 

It follows that c,,, # 0, whence abE z\Z. The two other statements are immediate 

consequences. 0 

We can extend the topology Y from Z to 2; for convenience, we denote the extended 

topology also by F. A fundamental system of neighborhoods at zero is 6?= {~~}m>3, 

where V, is the closure of V, E g in the new topology on 2 (see [lo, Theorem5, 

p. 1751). It is easily checked that the neighborhoods in the basis 2 are the following 

sets: 

V,= Ca,pnEZa,EH, la,Im<pn+l . 
iz il=i?l I 

In the rest of this section, given the element GL = c,“=, a,p, E 2, we shall call elk = 

c,“=k a,p,,_ and Pk = cf: w,. The next theorem shows a peculiarity of the comple- 

tion ring Z. We need the following technical lemma to prove it. 

Lemma 4. Given the element CI = I,“=, a,,p, E 2 and a natural number m > 2, for all 
t E N, there exists a number kt 2 t such that, for all k > kr, we have (C(k)m = C,“=, q&p,, 
E K;, where lck,, 1’ < pn+l , for all n > k. 

Proof. The power (tlk)m can be written as 

(13) 

Notice that the sum within the brackets has (n - k + l)m-l terms. Let b, = max{ laj I: 
k Ij 5 n}. Given t E N, there is kt 2 3mt such that for all n 2 k, the inequalities 

(b,,)3mr < pn+l and nm I p,, hold. For k > kt, we can now bound the coefficients ck,, in 

(13) as follows: 

Theorem 4. The ring H is algebraically closed in 2. 
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Proof. Let c1= c,“=, a,,p,, E 2\;2. Infinitely many a,, are nonzero. Let R(X) E Z[X] be 

a polynomial of degree III > 2. We claim that R(a) # 0. We split the polynomial R(X) 

into the following sum: 

m-1 

R(X + Y)=Pl)(X) + CE(X)Y -tP,Yrn, 
i=l 

where P&Y) is a polynomial of degree m, deg(iq) <m for i = 1,. . . , m - 1, and Pm 
is a COnStaId pOlynOI&d. For each k > 1 with ak # 0, we write a = j& + Uk, where pk 

and fxk are as defined before Lemma 4. Therefore, R(U) =R(& + Ek) splits into the 

following sum: 

(14) 
i=l 

We shall show that the two terms of (14) cannot have sum zero for k big enough. There 

exists kl E N such that PO(&) # 0 for all k 2 kl. Given a natural number t 2 4, there 

exists k, E N such that for all k > k, the inequalities ]Pi(fik)If < pk, (i = 0,. . . , m - 1) 

and mt < pk hold. Besides, applying the previous lemma, there is lt E N such that 

for all k>C, and each i=l,... , m we have (ak )’ E Fzr, i.e., (@& >’ = c,“=, Ci$n, where 

Icin12t < pn+l for all IZ > k. Therefore, for k 2 max{t, kl, kt, It}, the second term of the 

sum (14) can be written as 

In this expression the coefficients of the p,, are bounded as follows: 

Therefore, v = czk b,,p, E 6;. We consider two cases. Firstly, if v e Z, then R(u) = 
PO(pk) + v # 0, since PO@) E H. Secondly, if u E Z’, then v= cl=, b,,p, E K. If v = 

bkpk, then Iv] 2 pk. If l> k, applying formula (3), then 101 2 pl-p,/2 > pk. On the other 

hand, IpO(pk)l<(pk>“‘<pk. ConSequently IpO(/?k>l<lVI, and so R(cr)=Pa(ljk)+~#O. 

Some examples of topological rings are obtained if we choose particular sequences 

(Pn)nw let us consider two examples: 

First, the natural numbers pn being prime for all n 2 2. 

Second, p1 = 1 and p,, = p”! for all n 12, with p prime. In this case, the ring 

topology F is finer than the p-adic topology on Z. Both completions are related as 

follows. 

Lemma 5. The completion 2 is a subring of the ring of p-a& integers Z,. 
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Proof. We consider the natural homomorphism from the completion of (h, Y) into 

Z,. It suffices to check that the kernel of this continuous homomorphism is zero. 

Let c( = C,“=, a,p”! be a nonzero element of the completion (2,9) presented as in 

Lemma 3. Let a,,, be its lowest index nonzero coefficient. Now we consider this series 

to be summed in Z,. The new sum is the image of the original one under the natural 

homomorphism from the completion (z,Y) to H,. We show that the p-adic sum is 

not zero. 

Observe that, for a,b,tEH, O<Jbl<p’, implies ~b~p>~p’~p~~apf~p, where ) Ip 

denotes the p-adic absolute value. Using this remark and (3) we obtain inductively 

that, for k > m, 

Hence, the infinite sum has the same p-adic valuation as amp”‘! and is not zero. 0 

Notice that, because of Hensel’s lemma, there are in Z, integral elements over Z 

which are not in 2. In this instance, although the sequence (p”!) converges to zero, 

p is not topologically nilpotent, because (P”‘~) does not converge to zero. 

Third, p1 = 1 and p,, = 6”! for all iz 2 2. We get the completion ring which satisfies 

Z c f c 226, the last one being the 6-adic integers, which is not an integral domain, 

but 2 is. 

Proposition 6. If p,, is prime for all n > 2, then 2 is not a unique factorization 
domain. The same result holds if p,, = p”! for all n > 2, with p prime. 

Proof. We only show the first statement. Let (qi)iEN be the sequence of all prime 

numbers. We construct a nonzero element a E 2 which is a multiple of all qi. We pick 

out a subsequence of ( P,,)~~N, denoted by (p,,, )iE~, so that pni > (qlq2 . . f qi+l p, for 

all i E N. We define a = Cz, biql . . . qipni, where the positive integers bi are to be 

defined inductively as follows. Firstly bl = q2 and if bl,. . . , b,_l have already been 

selected, then we choose b, E N such that 0< b, 5 q,+l and Cy=, biql . . . qipn, is 

a multiple of q,+l. Therefore cc is a well defined element of 2 which is a multiple of 

all qi. 0 

3. Completable locally unbounded field topologies on the field of rational numbers 

In this section we give a topology on the rational field Q similar to the one con- 

structed in Section 2. The elements pn of the sequence (pn)nE~ defined in (1) are 

required to be prime for n 2 2. We define for all m E N the following subsets of Cl?. 

iFpn: la,I”,Ib,j”‘<p,+~, b, coprime to p,, , 
n~m n 

(15) 
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In the rest of this section, given any sum Ci_,, (a,,/b,)p,, E W,, we will assume that 

the requirements in (15) are satisfied. In order to prove that this family of subsets is 

a fundamental system of neighborhoods at zero for a field topology, we need some 

technical lemmas. 

Lemma 7. If the sequence (Pn)nE~ satisjies the properties (1 ), then 

(a) lTIr=, (Pn)2m-“<(~m+~)3im, 

(b) nr=:=, p,, I (~~+l)‘~(‘+*), for all m 2 3. 

Proof. An elementary use of induction. 0 

Lemma 8. If t E N, m 2 5t and cf=, (an/bn)pn E W,, then 

Proof. Let us consider the product of the denominators 

Lemma 7(b) provides a bound for the expression in the brackets; therefore, 

The inequality I’ I pl+l holds for 12 3. Whence 

(g 1 z lpn) f$bni 5 ( $lanbn) ~,b.,ii(p~+~)“‘s(p~+~~~+~ 

I (PI+l) 
l/l+l/l+l/l+f&+$ <(p,+l)l/fq q 

Lemma 9. For all m 2 15, the elements of W, are represented uniquely in the fol- 

lowing sense. If 

with a,,, b,, c,, d,, satisfying conditions (15), then an/b,, = c,/d,,, for all n 2 m. 

Proof. Suppose that a E W, can be represented in two ways satisfying conditions (15): 

I 

a= ctPn=&Fp”e w,. 

n=m n n=m n 
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We assume that ar/bl # c,Jdl; then 

anA - c,b, 
b d pn. 

ll=t?l 
n n 

Clearly, we have /a,d, - c,b,15 -C p,,+l and lb,d,15 < p,,+l for n = m,. . . ,I. We denote 

e, = a,d,, - c,b, and fn = b,d,, and we think of xi=,, (en/fn)pn as an element of Ws. 

Reducing to common denominator, we get 

The numerator splits into the sum 

(16) 

(17) 

Considering Lemma 8, we have 

and since f, and pi are relatively prime, we obtain that the first term of the sum (17) 

is relatively prime to pi. Since the second term is nonzero and divisible by pi, the 

numerator of (16) is nonzero and we have a contradiction. 0 

Lemma 10. Let m 2 15 and let 

I 

c FP” 

n>m n 

be an element of Wts with a,, b, satisfying conditions (15). If e E Z\(O) and f E N 

satisfy le13, f 3 <pm, then 

;&$Pn. 

n&n n 

In particular, e/f $! W,. 

Proof. We reason by contradiction. Suppose that 

(18) 

If there is only one summand on the right-hand side of this equality, then 

; = ;p,. 
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But this is impossible, since pl and bl are coprime and pi > lel! Now, we assume that 

there are more than one summand in (18) and al # 0. It is clear that 

l-l 

c $ Pn E w15 

n&n n 

also. We can group this element into a single fraction 

l-l 
C 
_- 

c 
a”pn. 

d -n>mbn _ 

Using Lemma 8, we conclude that 1cj3, ldl3 < pl. We convert the equality (18) into the 

following one: 

~p,_e_c=E!3. 
f d fd 

But, considering that led - cfl -=c PI and (PI, bi) = 1, we reach again a contradiction. 0 

Theorem 5. The family A&, = { Wm}mE~ is a fundamental system of neighborhoods of 
zero for a field topology on Cl. 

Proof. We have to see that the family 332 satisfies properties (4)-(9). It is easy to 

check that (4), (5) and (7) hold. For property (6) one needs Lemma 8; the product of 

two elements in the neighborhood I’& must be written analogously as we did in (10). 

Property (8) is a consequence of Lemma 10. The proof of (9), i.e., the continuity of the 

inverse map, is as follows. Given a neighborhood $ E 3~?2, in view of Lemma 8, there 

exists m 2 15s such that each element a = xi=, (a,,/b,)p, E W, satisfies the inequality 

(19) 

Let us show that (1 + W,)-’ C 1 + W,. Given a=CL=, (an/bn)pn E W,, we construct 

the inverse (1 + a)-’ = 1 + CL=,, (c,Jb,)p,, where c,, d,, are determined inductively 

so that (1 + a)-’ E 1 + W,. For the equality 

to hold, it is sufficient that the equations 
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are satisfied. From (20), we get 

cm -a, 
d,= b, +a,p,’ 

it is clear that Ic, Is, ]&I” < pm+]. We now proceed inductively. If we have determined 

c,, and d, for n =m,. . . , j - 1, let us find out cj and dj. From (21) we deduce that 

If aj = 0, we set cj = 0 and dj = 1. We assume that aj # 0. Applying the induction 

hypothesis and Lemma 7(b), we have 

j-l 

n d, < fi p;‘” 5 (~j+,)“~(j-~). 
ll=l?l n=m+l 

This result together with (19) implies that the denominator dj satisfies 

ldjl” <(pj+~)1’3(pj+~)1”‘-2’<~+~. 

One can get an analogous bound for the numerator. The denominator dj splits into the 

sum 

Since the left-hand term of this sum is relatively prime to pi, the denominator dj is 

too. Thus property (9) is proved. 0 

We shall denote this topology by Y2. It is a consequence from Lemma 9 that the 

topology Y-, defined in Section 2, is finer than the topology YZ restricted to Z. The 

topology 5 is, indeed, strictly finer than Y I 2 H. Let us consider the sequence (c,,,)~/~, 

where 

cm = ;pm + ;Pm+l. (22) 

It converges to zero in Fz/z, but is not in VIS, since a representation of c,,, in V,s (see 

(2)) would be also a representation in I+j5 distinct from (22). Since every neighbor- 

hood W, n Z contains infine primes, ,YIz is not an ideal topology, i.e., it does not 

have a fundamental system of neighborhoods at zero consisting of ideals. Considering 

[5, Lemma 111, we deduce the following result. 

Proposition 11. The topological field (Q,Fz) is not locally bounded. 

The proposition above can also be deduced from the classification of the locally 

bounded ring topologies on Q given in [8,9,12, p. 392 or 14, p. 1951. The topological 
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field (Q, 52) is not complete. In the next theorem we describe its completion, for which 

we need the following result. 

Lemma 12. Let (cL,),~N be a Cauchy sequence in (Q,Fz). There exist two sequences 

of integers (a,)nEN, (b,,)nErm, with b,,p,, relatively prime, and a Cauchy sequence 
(o,),~N which is equivalent to (Q,,),,,~N and satisfies co,,, = ~~=,(a,,/b,,)p,,, for all m. 
In addition, /an13’, (bn13’ <pn+l, for all n 231. 

Proof. There exists a subsequence (ym)mE~ of (a,),EN which satisfies ym, -ym2 EW~+~, 

for all ml, m2 > m. By Lemma 9, there is unique representation of the elements in W,, 

for m L 15. Besides, for m 2 31, the inclusion Wsi + W, & WI5 holds. For all m 2 31, 

the difference y,,, - ysi belongs to Wsi ; then we can write 

Ym = Y31 + 5 ppn, 
n=31 Inn 

(23) 

with l~,,l~~, lbmnl31 <P~+I, b,, relatively prime to p,, and ,uL, 2 m. We set al/b1 = ~31 

and, for m131, we define o,=ysi. For m>31, we define 

an =y31 + 2 ppn. 
n=31 mn 

Let us show that (o,),~M is a Cauchy sequence equivalent to (Y~)~~N. Given a 

neighborhood of zero Wm+l in the basis 2% with m 2 3 1, let us see that yk - Ok E W, 

for all k >p,,, (,u~ defined in (23)). Since yk - y,,, E Wm+l, we can write 

Yk - Ym 

Ic 

= c 
n=m+l 

with u,,,v,, satisfying conditions (15). Then 

Yk=Y3,+~~pn+ 2 ;p,, 
n=31 mn n=m+l 

=y3’+5PPn+ 2 (E+:)pn+ k tpn. 
n=31 mn n=m+ I n=&ll+l 

(We consider p,,, > m; if p,,, = m the proof follows analogously). Since 
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by the uniqueness of the representation of elements in Wls, we conclude that 

amn akn -=- 

b 
for all nE{31,...,m}, 

mn bkn 

~+$akn for ail nE{m+ l,...,pL,}, 
mn bkn 

&I akn -=- 

hl bkn 
for all n E {pm + 1,. . . , rc} 

Therefore, assuming h: > k, 

K 

Yk - ok = c 
n=k+l 

;pn E w-+1. 

The lemma is proved. 0 

Theorem 6. The completion of Q with respect to theJield topology 9-2 can be written 

as 

log(maxWI, hl)> 
b(Pn+l) 

= 0, b,, coprime to pn (24) 

Proof. Let cx E 6. Applying the lemma above, there is a Cauchy sequence 

where a,, b,, E Z and b,,, p,, relatively prime, whose limit is ~1. Then 

Given a neighborhood wk in the basis Bz with k > 3 1, there is mk 2 3 1 such that for 

all m2 2 ml > mk we have 

Considering that (an13’, lbn131 < pn+l and the uniqueness of the representation of ele- 

ments in wk for k 2 15, we conclude that la,lk, lb,lk 5 p,,+l for all n>mk, and 

lw(max(lanLIbnl)> <L 
log (pn+l ) - k ’ 

Therefore, the limit of the left-hand side is zero. The converse is similarly esta- 

blished. 0 
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In what follows, given any sum C,“=~(UJ&)P~ E 6, we will assume that the con- 

ditions in (24) are satisfied. Notice that in (24) it is equivalent to request b,, relatively 

prime to pn for all n except possibly a finite number. 

In order to prove that the completion ring 6 is actually a field, we need the following 

result. 

Lemma 13. Given any element C,“=l(an/b,,)pn E G\O and any integer t E N, there 

exists mt E N such that for all m 2 mt we have 

(( g$jPn) fp)’ <Pm+l. 

Zf m > mt and Cf=,(an/b,)pn = c,,,jd,,,, where c, and d,,, are relatively prime integers, 

then Icmlt, l&l” < pm+l. 

Proof. It suEices to bound the expression 

filb,15mz,pmfilb,l, (25) 
n=l n=l 

where c1,= max{laij,..., la,l}. Given t E N, let r = 6t. There exists no E N such that 

lW<pn+l and n<(p,+l)‘/“, for all n >no. There exists n1 EN such that I~(,$<p~+l 

and II:;’ IhI <(p,+l) ‘b for all m >;I. Applying Lemma 7(b) we obtain , 

I fi pn I(~rn+d’+~). 

n=n(l+l 

Therefore, for m 2 max{no,ni, r}, expression (25) is bounded as follows: 

The lemma is proved. 0 

The previous lemma can be easily generalized to the following result. 

Lemma 14. Let any element C,“=l(an/b,)pn E G\Q and any polynomial R(X) E O[X] 

be given. For each t E N there exists m, E N such that for all m > mt we have 

where c, and d,,, are integers that satisfy Ic,lt, Id,,l’<p,,,+l. 
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Theorem I. The completion 6! is a jield. 

Proof. Let CI = C,“=l(an/b,,)pn E 6!\Q presented as in Theorem 6. We construct its 

inverse p = CnoO,,(cn/d,)p,,, where c,,,d,, E Z are defined inductively. We suppose that 

al # 0. We set cl = bl and dl =al. Now suppose we have defined c,, and d,, for all 

n cm. The product c$ can be expressed as follows: 

If the coefficients of pm in the product c$ are zero for all m > 1, then /I = CC’. Thus, 

we get 

(26) 

The numerator and denominator of the right-hand side are integers. If a,,, = 0, we set 

c, = 0 and d, = 1. Now, assume a,,, # 0. Given r-1 > 3, we show that there exists ml E N 

such that 

I&I” I pm+1 for all m>ml. (27) 

We call r = 3rl. By Lemma 13, there exists I 2: 6 such that, for all m > I, the denom- 

inator d,,, satisfies 

We call d = (nL=: ld,i) IT, 

Id1 lr i dp,,, > 

Applying (28), we inductively get 

IdI+1 lr F d2mp,,2, 

..., 

Idl+k lr 5 d2k Pl+k+l . 
Using Lemma 7(a), the expression on the right-hand side is bounded by 

(28) 

d2bl+k+l )3’(‘+k)P/+k+~ < d2k&+,. 
From these inequalities we conclude that 

Id,/’ < d2>i+l for all m 2 1. 
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There exists mo E N such that d2m < pm, for all m > mo. Consequently, 

l&l’ I pi+, for all m > max{Z,mo} 

and (27) is proved. It remains to show that the denominator of (26) is relatively prime 

to pm, for m big enough. This is an easy consequence of the inequality 

~[$~p~)~&<p~ forallmbigenough. 

One can find an analogous bound for the numerator. Then we have constructed the 

element b E 6 verifying conditions of Theorem 6. 0 

The topology Y2 can be extended from Q to 6, as done in Section 2; we shall 

denote this extended topology also by Y2. A basis of neighborhoods at zero is @2 = 

{Kn)rn> 153 where w, is the closure of W, E 92 in Q. More explicitly, we have 

w,= ~%p,E~:la.l”,lb,l”ip,+,, 

i 

b,, coprime to p,, . 
n=m n 1 

For any sum C,“=, (an/bn)p,, E rm, we will understand that the above requirements 

for the cofficients are satisfied. The ring 2, constructed in Section 2, is included in 

6. Nevertheless, (z,Y) is not a topological subring of (G’,&); the sequence (c,) 

defined in (22) converges to zero in Y2, but not in K Considering this and the fact 

that i;;, is included strictly in w, f’ 2 for all m 2 15, we conclude that the topology 5 

is strictly finer than Y21~. In the next section we see that 6 is not the quotient field 

of 2. 

In the sequel, given the element c( = C,“=l(an/b,)pn E 6, we denote ak = 

Crzk(an/b,)p,, and Bk = ~~~~(a,,/b,,)p,,. The next theorem shows a remarkable prop- 

erty of the completion field 6; we shall need the following result. 

Lemma 15. Given a = C,“=l(an/bn)pn E 6\Q and m E N, for all t E N there exists 

kl 2 t such that, for all k > k,, 

i.e., Icknl’, IdknIt <p,,+l and dk,, relatively prime to p,,, for all n 2 k. 

Proof. The proof is similar to that of Lemma 4, although it is more cumbersome, since 

one must take care of denominators. We make use of Lemma 7(b) here. 0 

Theorem 8. The rational number Jield is algebraically closed in 6 

Proof. Let CI= C,“=l(an/b,)pn E &\Q. Infinitely many a,, are nonzero. Let R(X) E 

Q[X] be a manic polynomial of degree m 2 2. We claim that R(E) # 0. As we did in 
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the proof of Theorem 4, we split the polynomial R(X) into the following sum: 

m-1 

R(X + Y) = P&r) + c q(x)Yi + Y”. 
i=l 

For each k > 1 with ak # 0, we write CI = /& + @k, where Bk and & are as defined before 

Lemma 15. Therefore, 

R(a) = R(& + ak) = PO(Bk) + -f&~k)(ork)’ := pO@k) + u. 

i=l 

(29) 

We claim that, for k big enough, this sum cannot be zero. There exists kl E N such 

that pa&) # 0 for all k 2 kl. Given a natural number t 2 15, by Lemma 14, there 

exists k, E IV such that for all k 2 k, and i= 0,. . .,m - 1, fl(Pk) =ei/fi, for some 

ei, J;: E Z with /eilmr, If;:l”’ < pk. There exists ko such that mr < pk, for all k 2 ko. In 

addition, by Lemma 15, there is Zt E N such that for all k 2 It and i = 1,. . . , m, we 

have (&)i = c,“=, (Cin/din)pn E w3mt, where Icin13mt, ldin13mf < pn+l and & coprime to 

p,, for all n > k. Therefore, for k > max{t, ko, kl, kt, I,}, the second term of the sum in 

(29) can be written as 

v= 

In this expression the coefficients of the p,, can be expressed as follows: 

Here the numerator is bounded by 

The denominator h, is bounded analogously. In order to show that h, is coprime to 

p,,, it suffices to consider that din is coprime to p,, and the bound 

I I 

fifi <z;(pk)l’“‘=(pk)l’f <P,, for all n>k. 
i=l 

Therefore, u = ~~=, q(pk)(ak)i = crCk (gn/h,)p, E K. We consider two cases. 

Firstly, if v 4 a, then R(a)=PO(j?k) + u#O, since PO&) E Q. Secondly, if u E Q, 

then v = CL& (gn/h,,)pn E R. Since fi(flk) = e0/f0, with leOIm’, Ifol”’ < pk; applying 

Lemma 10, we conclude that &(fik) z-v. Thus R(a) # 0. 0 

Just as in p-adic analysis, there are nonconstant functions whose derivative is identi- 

cally zero. Let us give an example. We define a function f : (2, F) + (6, F2) as 
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follows; for each CI = C,“=, anpn E 2 represented according to Lemma 3, f<Czp=, anpn) 

= C,“=, a,p,+l. Fixed CI E 2, there exists a neighborhood of zero vm E .!% such that 

f( CI + h) = f(cc) + f(h) for all h E Fmi,. Therefore f is continuous in 2. The derivative 

f’(a) is, as usual, defined by 

which in this case equals limb-0 f(h)/h. We show that this limit is zero. Given 

E$ E GZ, there exists Vm E GZ such that w,( 1 + wm)-’ C fl. Let h = czZm b,p, E 

i&,, \ { 0}, with 1 bzm j2m < pzm+l ; we can assume that bzm # 0 (if not the proof follows 

similarly). Then 

f @I - = C,“=,, bnpn+l 

h IX,“=,,,, bn Pn 

= 
( 

n&-&Pn+:) (1+.=& &Pn)l aid1 +El-1 CF. 
m m 

Consequently, limh,a f(h)/h = 0. 

4. Other field topologies on the rational number field 

In this section we present other examples of field topologies on the rational field 

which are similar to the topology in the previous section. All the proofs run anal- 

ogously to those in the above section and we will omit them. The underlying idea 

for the topologies in this article is taken from Section 3 of [6]. The following field 

topology on Q is even more according to Mutylin’s example. Let (pn)nE~ be any 

sequence of natural numbers safisfying conditions (1 ), (following a suggestion of N. 

Shell, we do not require that the pn be prime in this case). For m > 2 we define the 

sets 

: ld”, bnlm < pn+l, 0 < Mm < p,, . 

Notice that 9’&,, c W, if the p,, are primes. The family {V}mz2 constitutes a fundamen- 

tal system of neighborhoods of zero for a HausdorII field topology on the rational field. 

We denote this topology by Ys. Now the completion is a field that can be expressed 

as 

lim log(maxC4, I~nll> = lim 

1% (Pn+l > 
and b, # 0, for all n 
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This field fulfills properties analogous to those of 6 constructed above. In particular, 

Q is algebraically closed in 9. Let us point out the following subring of 9. 

R= FFp,,:lim 

{ 

log Ia, I 

n=l n logbJn+l) 
= lim log Ibni = () 

1 l%(Ptz) . 

If pl = 1 and pn is prime for it > 2, we have the subsequent algebraic strict inclu- 

sions 

The ring 2 is the one constructed in Section 2. I have not been able to determine 

whether 2 is the quotient field of R or not. 

If we take the sequence (pn)nE~ to be PI= 1 and pn = p”! for n > 2, with p prime, 

we get another field topology on Q by defining a fundamental system of neighborhoods 

at zero {Um}mE~, where 

Urn= kFpn!-‘a: \an/m,\b,\m<p(“+l)!, O<sn<z, b, 

1 

coprime to p . 
n>m n 1 

We denote this topology by 9& It is finer than the p-adic topology on Q, but coarser 

than Ys (assuming p,, = p”! for n 2 2). The completion is a field which can be ex- 

pressed as 

lirn log’max{la’l’ Ibnl}) = lirn ~ =o 
(n + l)! n! 

b, coprime to p 

The rational field is also algebraically closed 

ation the local ring 

Z(,) = 
1 

% E Q : b coprime to p 
i 

. 

In this ring we define the following sets 

S, = 2 $p”! : lanlm, lbnl” < p@+‘)!, 

n&n n 

The family {S,},,N is a fundamental system of neighborhoods at zero for a Hausdorff 

ring topology on ZcP). For notational convenience we set p”! = 1. The completion is 

the ring 

in this field. We now take into consider- 

b, coprime to p , 

Gi= 2 1 n=O 

F p’! : lim 

n 

= 0, b, coprime top . I 
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This ring is also a topological ring, in which the family {??,},,,,2 is a neighborhood 

basis at zero, where 

We denote this topology by Ys. This completion ring is a local domain (possibly not 

Noetherian) whose maximal ideal is 

log@ax{M IW 
(n + l)! 

=O, b, coprime to p . 

Its quotient field K can be represented as follows. 

. 

The field K can be furnished with a field topology, for which a6 = {p’ Sm}l,mE~ 
constitutes a fundamental system of neighborhoods at zero (see [ 10, Theorem 2, p. 241). 

We denote this topology by FG. I have not been able to get the field K as a completion 

of Q for any ring topology. Nevertheless, (K,fe) is a complete field, which we prove 

using an idea from [15, Lemma, Theorem 11. 

Proposition 16. The topological field (K, FG) is complete. 

Proof. Let (CY,)~EN be a Cauchy sequence in (K,&). There exists IZO E N such that - 
cI,, -01,, E Ss C Zc,j for all nl,n2 > no. In particular, u,--cI,, E Zc,) - for n 2 no. Therefore, 

we can assumm that LX, E Zc,) - for all n. Since the topology Ys is coarser than Ye 

restricted to ZQ), the sequence (cI,),~N is Cauchy in (Z?),Ys) too. Thus, it converges 

to an element a E Z?j. Let us show that c( is also the limit of (u,)~~~ for the topology 

%. We set /In = CX~ - c( and shall prove that (/$)nE~ is a null sequence for the topology 

F6. Given a neighborhood of zero p’ g,,, E 986, there exists ml, ri E fV such that p’s,, + 
3, C s,, for all Y L ri. Besides, there exists no E N such that /I,,, - fin, E p’s,, , for all 

nl,n2 2 ‘20. For each Y 2 ~1 there exists n, 2 no such that B,,, E 3,. Therefore, 

Pn,=(Pn, -Pn,)+p &- Ep% +s m, r’ 

We conclude that 

for all nl >no. 0 
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We have the following strict inclusions of rings and fields (taking p,, = p”! for 

n>2): 

9 c G c Q,. 

u u (30) 

~cZ;~CK 

The ring f is the one constructed in Section 2, and Q, the p-adic field. Neither ring 

nor field in (30) with its corresponding topology is a topological subring of any other 

in the diagram. 

5. Topologies on k[X] and k(X) 

In this section the same ideas are used to construct a ring topology on k[X] and 

a field topology on k(X) with similar properties. We shall omit the proofs. In what 

follows, Q,&Y), R,(X) will denote polynomials of k[X]. We define in k[X] the fol- 

lowing subsets: 

1 

U, = 
(n + l)! c Q,(Xyr”! : deg(Q,(X)) < ~ . 

n>m m 

The family {Um}mErm is a fundamental system of neighborhoods of zero for a Hausdorff 

ring topology on k[X], which we denote by FT. This topology is finer than the ring 

topology whose neighborhood basis at zero is the family of ideals {(X”)}nE~. 

Proposition 17. The topological ring (k[X],FT) is not locally bounded 

Proof. The field k is a bounded set with respect to this ring topology. Obviously, the 

topology is not an ideal topology. Applying [ 12, Theorem 37.181 or [ 1, Theorem 111 

we conclude that (k[X],FT) is not locally bounded. 0 

For notational convenience, if Q&Y) = 0, we set deg (Q,,(X)) = 0. The completion 

of (k[X],YT) is the ring 

kF] = a + g Q,(Xyr”! :aEk and lim deg (Q&O> = o 
n-c% (n + l)! . 

n=l 

This ring is, algebraically, a proper subring of k[[X]]. In the field k(X) of rational 

functions over k we define the following sets 

deg(Q,),deg(&) < (n + l>Vm, 

’ O<s,, <n!/m, R,(O)#O 
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The family {W,},,N is a neighborhood basis at zero for a field topology on k(X). 

The completion I@) is a field constructed analogously to the previous examples. Once 

again, k(X) is algebraically closed in its completion. 
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